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Meshes Can Be Complicated

Fluid flow over an airfoil
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Skinny Triangles

When a mesh has skinny triangles, finite element methods are
typically numerically unstable.

Two skinny triangles
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Another Reason for a Robust Method:
Computation Time

Remeshing. . . 2%

Remeshing Time � Solve Time
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Spectral Methods: A Basis

f(x) =
∑
i

ai · gi(x)

The spectral basis for an 8× 8 block of a JPEG image
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Chebyshev Polynomials: A Good Spectral Basis

Tn(x) = cos(n arccos(x)), −1 ≤ x ≤ 1

f(x) =

∞∑
i=0

aiTi(x) ≈
n∑
i=0

aiTi(x)
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Monomials are a troublesome basis. . .
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. . . while 1,000,000-degree Chebyshev expansions have virtually no
loss of precision!
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Discrete Differential Operators

Differential Equation ⇔ Discrete Linear Operator

y(x) =
∑
i

yiTi(x), ~y =

y0y1
...



f(x) =
∑
i

fiC
(1)
i (x), ~f =

f0f1
...


D1~y = ~f ⇔ dy

dx
= f

C
(λ)
n are ultraspherical polynomials.
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Differential Equations

du

dx
= f → D1~u = ~f

du

dx
+ u = f → (D1 + S0) ~u = ~f

d2u

dx2
− 3

du

dx
+ 2u = f → (D2 − 3S1D1 + 2S1S0) ~u = ~f

Sk converts a vector from the basis of C(k) to C(k+1) and S0

converts vectors from a basis of T to a basis of C(1)
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Boundary Conditions

d2u

dx2
= f, u(−1) = lbc, u(1) = rbc



0 0 4
6

8
. . .

2n

1 −1 1 −1 1 · · · (−1)n
1 1 1 1 1 · · · 1





u0
u1
u2
...

un−2
un−1
un


=



f0
f1
f2
...

fn−2
lbc
rbc



Tn(1) = 1, Tn(−1) = (−1)n
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Spectral Methods in Two Dimensions

f(x, y) =

∞∑
i,j=0

aijTi(x)Tj(y)

The basis function T5(x)T3(y)
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Two Dimensions are Only a Kronecker Harder than One

L · ~u = ~f

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB


uxx + uyy = f(

D2 ⊗ (S1S0) + (S1S0)⊗D2

)
· ~u = ~f
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Domains

Problem: Canonical domain is [−1, 1]× [−1, 1]
Solution: Bilinear Maps!

x = a1 + b1x
′ + c1y

′ + d1x
′y′

y = a2 + b2x
′ + c2y

′ + d2x
′y′

The Chain Rule is used to transform the differential equations from
the quadrilateral to the square.
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How do we get triangles?

There is no nonsingular transform from a square to a triangle. The
solution is to partition the triangle into three quadrilaterals.
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Schur Complement Matrix


A11 0 0 A1G

0 A22 0 A2G

0 0 A33 A3G

AG1 AG2 AG3 AGG



U1

U2

U3

UG

 =


F1

F2

F3

FG



U1

U2

U3

UG
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Robustness
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Schur Domain Decomposition
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